45 research outputs found

    Effect of stabilizer on flutter stability of truss girder suspension bridges

    Get PDF
    An aerodynamic optimization measure of the flutter stability of long-span suspension bridges with truss girder is presented in this paper. At first, the improvement of several kinds of central stabilizers and horizontal stabilizers on flutter stability is examined through series of section model and full aeroelastic model wind tunnel tests. Subsequently, the flutter derivatives of the truss girder with and without stabilizer are identified based on two degrees of freedom coupling free vibration method. Furthermore, based on the identified flutter derivatives, the critical flutter velocities of the truss girder section with and without stabilizer are analyzed through two dimensional flutter analysis method and the critical flutter velocities of the full bridge with and without stabilizer are analyzed through three dimensional method. Afterwards, the influence of each flutter derivative on the flutter stability of the truss girder is investigated. The results indicate that central upper stabilizer can effectively increase the critical flutter velocity of the truss girder. In contrast, the central lower stabilizer and horizontal stabilizer have less influence. Setting up central upper stabilizer leads to an obvious decrease in the value of the flutter derivatives A2* and H2*, while the flutter derivatives H1*, H4*, A1* and A3* are little influenced. The two dimensional and three dimensional flutter analysis results agree well with the sectional model and full model wind tunnel test results respectively

    Characteristics of intense winds in mountain area based on field measurement: Focusing on thunderstorm winds

    Get PDF
    Abstract With the development of mountain areas, more wind-sensitive infrastructures are constructed. In the design of these infrastructures, the wind loading cannot be accurately obtained from the code based on the flat area. Hence, it is of great importance to study the mountain wind characteristics. In this study, the wind field measurement was initiated in a mountain area of western China. After the examination of the measured data, two typical wind events including the thunderstorm wind and thermally developed wind are highlighted. To extract and separate these wind events, an automatic classification method is proposed. The thunderstorm wind is analyzed in order to capture the rapid variation of its maximum wind speed, mean temperature and mean humidity through the boxplot method while the analysis of thermally developed winds relies on the correlation between the mean wind speed and mean temperature. Since the thunderstorm wind is relatively more important for wind engineering, its wind characteristic is focused hereafter and analyzed in detail based on the ultrasonic anemometer data. The characteristics of the thermally developed wind and other wind will be the matter of further studies and investigations. Results show that the characteristics of the thunderstorm wind measured in the mountainous area have no significant difference in comparison with those in the flat area. Due to the limited data, the above results deserve further investigations when more measurements become available

    Genetic Signatures in the Envelope Glycoproteins of HIV-1 that Associate with Broadly Neutralizing Antibodies

    Get PDF
    A steady increase in knowledge of the molecular and antigenic structure of the gp120 and gp41 HIV-1 envelope glycoproteins (Env) is yielding important new insights for vaccine design, but it has been difficult to translate this information to an immunogen that elicits broadly neutralizing antibodies. To help bridge this gap, we used phylogenetically corrected statistical methods to identify amino acid signature patterns in Envs derived from people who have made potently neutralizing antibodies, with the hypothesis that these Envs may share common features that would be useful for incorporation in a vaccine immunogen. Before attempting this, essentially as a control, we explored the utility of our computational methods for defining signatures of complex neutralization phenotypes by analyzing Env sequences from 251 clonal viruses that were differentially sensitive to neutralization by the well-characterized gp120-specific monoclonal antibody, b12. We identified ten b12-neutralization signatures, including seven either in the b12-binding surface of gp120 or in the V2 region of gp120 that have been previously shown to impact b12 sensitivity. A simple algorithm based on the b12 signature pattern was predictive of b12 sensitivity/resistance in an additional blinded panel of 57 viruses. Upon obtaining these reassuring outcomes, we went on to apply these same computational methods to define signature patterns in Env from HIV-1 infected individuals who had potent, broadly neutralizing responses. We analyzed a checkerboard-style neutralization dataset with sera from 69 HIV-1-infected individuals tested against a panel of 25 different Envs. Distinct clusters of sera with high and low neutralization potencies were identified. Six signature positions in Env sequences obtained from the 69 samples were found to be strongly associated with either the high or low potency responses. Five sites were in the CD4-induced coreceptor binding site of gp120, suggesting an important role for this region in the elicitation of broadly neutralizing antibody responses against HIV-1

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Numerical Study on Aerostatic Instability Modes of the Double-Main-Span Suspension Bridge

    No full text
    In order to investigate the aerostatic instability mode and underlying failure mechanism of the new suspension bridge with double main spans, a corresponding program based on aerostatic load increment and two-iteration scheme was developed with considering the effects of aerostatic and geometric nonlinearity. Three double-main-span suspension bridges were taken as a case study to analyze the full range of aerostatic instability with different initial attack angles. Results show that there are two aerostatic instability modes for the double-main-span suspension bridge, one of which is the bilateral antisymmetric instability mode and the other is the single-span instability mode. The critical aerostatic velocity corresponds to the instability mode that occurs first, which is dependent on structural dynamic properties and initial attack angles. In addition, mechanism of the two aerostatic instability modes was discussed in detail

    Dynamic Reliability Evaluation of Road Vehicle Subjected to Turbulent Crosswinds Based on Monte Carlo Simulation

    No full text
    As a vehicle moves on roads, a complex vibration system of the running vehicle is formed under the collective excitations of random crosswinds and road surface roughness, together with the artificial handing by the drivers. Several numerical models in deterministic way to assess the safety of running road vehicles under crosswinds were proposed. Actually, the natural wind is a random process in time domain due to turbulence, and the surface roughness of a road is also a random process but in spatial domain. The nature of a running vehicle therefore is an extension of dynamic reliability excited by random processes. This study tries to explore the dynamic reliability of a road vehicle subjected to turbulent crosswinds. Based on a nonlinear vibration system, the dynamic responses of a road vehicle are simulated to obtain the dynamic reliability. Monte Carlo Simulation with Latin Hypercube Sampling is then applied on the possible random variables including the vehicle weight, road friction coefficient, and driver parameter to look at their effects. Finally, a distribution model of the dynamic reliability and a corresponding index for the wind-induced vehicle accident considering these random processes and variables is proposed and employed to evaluate the safety of the running vehicle

    Study on Aerodynamic Characteristics of A New Suspension Bridge with Twin-box Girder

    No full text
    This paper was reviewed and accepted by the APCWE-IX Programme Committee for Presentation at the 9th Asia-Pacific Conference on Wind Engineering, University of Auckland, Auckland, New Zealand, held from 3-7 December 2017

    Some Statistical Aspects of Grid Turbulence at Higher Reynolds Numbers

    No full text
    This paper was reviewed and accepted by the APCWE-IX Programme Committee for Presentation at the 9th Asia-Pacific Conference on Wind Engineering, University of Auckland, Auckland, New Zealand, held from 3-7 December 2017

    Spatial Correlation Analysis of Fluctuating Wind and Field Measurement of Long Span Bridge

    No full text
    This paper was reviewed and accepted by the APCWE-IX Programme Committee for Presentation at the 9th Asia-Pacific Conference on Wind Engineering, University of Auckland, Auckland, New Zealand, held from 3-7 December 2017
    corecore